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ABSTRACT

In this paper, we provide support for the Rayleigh–Taylor-(RT)-based subgrid model used in full-star simulations
of deflagrations in Type Ia supernovae explosions. We use the results of a parameter study of two-dimensional
direct numerical simulations of an RT unstable model flame to distinguish between the two main types of subgrid
models (RT or turbulence dominated) in the flamelet regime. First, we give scalings for the turbulent flame speed,
the Reynolds number, the viscous scale, and the size of the burning region as the non-dimensional gravity (G) is
varied. The flame speed is well predicted by an RT-based flame speed model. Next, the above scalings are used to
calculate the Karlovitz number (Ka) and to discuss appropriate combustion regimes. No transition to thin reaction
zones is seen at Ka = 1, although such a transition is expected by turbulence-dominated subgrid models. Finally,
we confirm a basic physical premise of the RT subgrid model, namely, that the flame is fractal, and thus self-similar.
By modeling the turbulent flame speed, we demonstrate that it is affected more by large-scale RT stretching than
by small-scale turbulent wrinkling. In this way, the RT instability controls the flame directly from the large scales.
Overall, these results support the RT subgrid model.
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1. INTRODUCTION

It is widely believed that an understanding of the explosions
of Type Ia supernovae requires a better understanding of
Rayleigh–Taylor (RT) unstable (Sharp 1984) deflagrations.
Unfortunately, such an understanding is currently only partial.
Models for Type Ia supernovae based on the detonation of a
white dwarf progenitor require a transition between an initial
nuclear deflagration and an eventual detonation of the entire
progenitor star; a transition from a deflagration to a detonation
is necessary because models that rely on either a deflagration
or a detonation alone do not reproduce observations (Arnett
1969; Khokhlov et al. 1993; Khokhlov 1995; Filippenko 1997;
Gamezo et al. 1999, 2003, 2004). In such models, initial nuclear
deflagrations (e.g., subsonic flames) are RT unstable because the
dense fuel sits above lighter burnt ashes in the star’s gravitational
field. The resulting RT instability affects the flame in two
different ways: first, it stretches the flame surface; second,
the nonlinear evolution of this stretching process generates
turbulence behind the flame front, which back-reacts on the
flame surface, wrinkling it further (Vladimirova & Rosner 2005;
Zhang et al. 2007). Both stretching and wrinkling add to the
surface area of the flame, speeding it up. In the deflagration-to-
detonation (DDT) model of Type Ia supernovae, the subsonic
flame consequently transitions to a supersonic flame, e.g., a
detonation, causing the star to explode (Oran & Gamezo 2007).
The details of the DDT, in particular, when and how the
transition to detonation occurs, determine critical observables
such as nickel production (Gamezo et al. 2003, 2004, 2005;
Röpke & Niemeyer 2007; Krueger et al. 2012; Seitenzahl et al.
2013). This transition is still not understood, but one possibility,
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the Zel’dovich gradient mechanism (Zel’dovich et al. 1970),
depends critically on the details of the conditions produced by
the deflagration (Khokhlov et al. 1997, 1999; Oran & Gamezo
2007; Röpke 2007; Röpke & Niemeyer 2007). Without a full
understanding of RT unstable flames, the mechanism and final
nickel yields of this class of Type Ia supernovae models will
remain uncertain.

Ideally, this transition would be studied using full-star simu-
lations. However, the separation of scales in the problem make
this unfeasible: the size of the star (approximately Earth-sized)
is much too large compared to the width of the flame (10−4 to
102 cm) to resolve both in the same simulation (Oran 2005).
Instead, full-star simulations must include a variety of subgrid
models, including, in particular, a subgrid model that gives the
speed of the flame below certain scales. There are two different
types of such subgrid models, each relying on a particular in-
terpretation of deflagration behavior in the flamelet regime. In
one, the turbulent flame speed is set by the RT instability. In the
other, the interactions of turbulence with the flame front dictate
the flame speed. The question at the heart of this paper is which
of these two deflagration subgrid models is more physically
appropriate.

In RT-type subgrid models (Khokhlov 1995; Khokhlov et al.
1996; Gamezo et al. 2003, 2004, 2005; Zhang et al. 2007;
Townsley et al. 2007; Jordan et al. 2008), the turbulent speed
of the flame on an unresolved scale Δ is given by the velocity
scale vRT(Δ) ∝ √

g A Δ which is naturally associated with the
RT instability on scale length � = Δ. Here, g is the gravity
and the Atwood number is A = (ρfuel − ρash)/(ρfuel + ρash),
where ρfuel and ρash are the densities of the fuel and the ash.
This model for flame behavior is based on the hypothesis that
the flame surface is self-similar and self-regulating (Khokhlov
1995; Gamezo et al. 2003; Zhang et al. 2007). Self-similarity
means that small parts of the flame behave in a similar way to
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the entire flame (and so follow vRT(�) ∝ √
g A � at any given

scale, �). Self-regulation means that the overall flame speed
will adjust back to the RT scaling if small scales are forced to
move at a higher flame speed. The higher speed will burn out
small wrinkles in the flame surface, decreasing the flame surface
area and returning the flame speed to its RT value. The RT
subgrid model states that the large-scale RT instability is the
major determinant of the flame speed, and that any small-scale
effects of turbulence will be self-regulated away.

The second type of subgrid model is based on the interaction
of the turbulence produced by the RT instability with the flame
front (Niemeyer & Hillebrandt 1995; Niemeyer & Woosley
1997; Niemeyer & Kerstein 1997; Reinecke et al. 1999; Röpke
& Hillebrandt 2005; Schmidt et al. 2006a, 2006b). In this model,
the RT instability deforms the flame front, the deformation
produces turbulence and the turbulence back-reacts on the
flame front to control the final turbulent flame speed. These
types of subgrid models are based on the field of turbulent
combustion, which generally studies the propagation of a
flame through a turbulent velocity field. In that case, to first
order, the turbulent flame speed is determined by the root-
mean-square (rms) velocity of the turbulent velocity field.
More elaborate models have been developed and one rigorous
Large Eddy Simulation (LES)-based variant has been adapted
for supernova subgrid models by Schmidt et al. (2006a, 2006b).
Their model also includes the effects of small-scale buoyancy
to incorporate RT effects. These models assume that a flame
interacts with turbulence behind it in a similar way as with
turbulence in front of it. Whether or not this assumption is true
is unknown.

Which subgrid model is superior can only be determined by
direct studies of RT unstable flames in isolation, and there have
been a variety of such studies. They can be organized by dif-
ferent criteria, beginning with dimensionality. Two-dimensional
simulations (Bell et al. 2004; Vladimirova & Rosner 2003, 2005;
Zhang et al. 2007) can generally cover more of parameter space,
but they are fundamentally limited because the behavior of two-
dimensional (2D) turbulence is different from three-dimensional
(3D) turbulence. 3D simulations (Zingale et al. 2005b; Zhang
et al. 2007; Ciaraldi-Schoolmann et al. 2009; Chertkov et al.
2009) treat the turbulence correctly, but they are computation-
ally expensive and so can only be run for short times and for
fewer parameter values. RT flame simulations can also differ in
what scale they resolve; some use a subgrid model themselves
(Ciaraldi-Schoolmann et al. 2009), others resolve the Gibson
scale and the flame width (Bell et al. 2004; Zingale et al. 2005b),
and still others resolve down to the viscous scale (Vladimirova &
Rosner 2003, 2005; Chertkov et al. 2009). Some simulations use
a model flame in a Boussinesq setting (Vladimirova & Rosner
2003, 2005; Chertkov et al. 2009), a thickened model flame in a
degenerate setting (Zhang et al. 2007), or a carbon–oxygen flame
(Bell et al. 2004; Zingale et al. 2005b; Ciaraldi-Schoolmann
et al. 2009). Carbon–oxygen flames are most realistic and di-
rectly applicable to supernovae, but model flames can better iso-
late specific effects, such as RT stretching. Studies tend to focus
on either the early, transient phases of flame development (Bell
et al. 2004; Zingale et al. 2005b; Zhang et al. 2007; Chertkov
et al. 2009) or the later, possibly saturated, stages (Vladimirova
& Rosner 2003, 2005; Zhang et al. 2007) when the flame speed
varies around a statistically stationary average. The flame in the
supernova is more likely to be statistically unsteady, because the
star is expanding as the flame propagates, but the question of
whether 3D, unconfined flames can saturate is still unresolved.

Thus, which choice is more physically relevant—statistically
unsteady or saturated simulations—remains unclear. Even if the
flame is only transient in the star, saturated simulations indicate
the statistically steady state the flame is approaching, even if it
never reaches it. Simulations vary in what parameter values they
use and also the combustion regime they probe: flamelets (Bell
et al. 2004; Zingale et al. 2005b; Vladimirova & Rosner 2003,
2005; Zhang et al. 2007), thin reaction zones (Bell et al. 2004;
Zingale et al. 2005b; Chertkov et al. 2009), or broken reaction
zones (Chertkov et al. 2009).

There have also been numerous studies that address other
aspects of burning in white dwarfs. These generally fall into
two categories: flames moving through pre-existing turbulence
and buoyant burning bubbles. Studies of flames moving through
fields of turbulence could apply if the initial turbulent convection
in the star is very strong. In that case, the flame could be
deformed and sped up as it is forced to interact with the turbulent
eddies. This is a well-studied problem in classical turbulent
combustion theory and a comprehensive list of papers would
be too long to include here. A few recent papers that explore
turbulent combustion with special reference or applicability
to the Type Ia problem include Aspden et al. (2008, 2010,
2011c), Poludnenko & Oran (2010), Poludnenko et al. (2011),
and Hamlington et al. (2011, 2012). However, a recent study
of the initial convection within the white dwarf shows that the
convective turbulence probably is not strong enough to influence
the flame directly (Nonaka et al. 2012). Another variation of
the turbulent combustion problem is to consider the effect of
turbulence created by a carbon flame on a trailing oxygen flame
(Woosley et al. 2011; Aspden et al. 2011b). Finally, there has
also been interest in studying the initial buoyant burning bubble
as a whole (Vladimirova 2007; Zingale & Dursi 2007; Aspden
et al. 2011a).

Our simulations add to the body of work on RT unstable
flames in isolation and attempt to fill in a mid-range gap
in parameter space for model flames. The parameter space
here is defined by a non-dimensional gravity, G, and a non-
dimensional box size, L (see Section 2). The product GL
compares the relative importance of the gravitational force and
laminar burning, with high GL being dominated by gravity and
low GL being dominated by laminar burning. Vladimirova &
Rosner (2003, 2005) explored the laminar flame and wrinkled
flamelet regimes in depth and began to penetrate into the
corrugated flamelet regime by choosing low values of GL.
Chertkov et al. (2009) focused on the transition between broken
reaction zones and thin reaction zones by choosing very high
values of GL. We probe the more turbulent regions of corrugated
flamelet regime and look for the transition to the thin reaction
zone regime by filling in the parameter space gap and focusing
on intermediate values of GL. The corrugated flamelet regime
is key for supernova studies, because the flame is expected
to spend a significant fraction of its time in this regime. The
transition between corrugated flamelets and thin reaction zones
is important because it could lead to conditions that may cause
a detonation.

This paper gives the results of a parameter study of a
simple, 2D, model flame. Because our focus is on reaching
an understanding of what effects dominate the flame speed,
we neglected many of the complications of white dwarf flames.
Thus, instead of a full chemical reaction chain, we used a simple
model reaction. Also, we used the Boussinesq approximation,
and therefore ignored compressibility effects and sound waves.
These simplifications allowed us to focus directly on the effect
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that gravity has on the flame without having to disentangle it
from other effects. This allows us to compare our results with
the those from carbon–oxygen flame studies, such as Bell et al.
(2004) and Zingale et al. (2005b), and point out differences. We
also focused specifically on the saturated state. In the saturated
state, burning and the RT instability balance each other and so
the quantities that we are measuring vary around a statistically
stationary average. By focusing on the saturated state, we can
obtain robust scalings with G that do not depend on time. In
these simulations, the flame is forced into a saturated state by
the presence of the boundaries. Because the study is in 2D, an
inverse energy cascade forces the integral scale of the turbulence
to the largest possible size—the size of the domain. In essence,
the domain “freezes” the evolution of the flame at a certain scale,
allowing it to be studied. The simulations resolve both the flame
width and the viscous scale so that the effects of turbulence on
the flame are fully accounted for. We focus on the transition
from an ordered flame to a highly disturbed one. In effect, we
extend the results of Vladimirova & Rosner (2003, 2005) for
model flames from the ordered regime into the parameter range
where the area behind the flame is turbulent and wrinkles the
flame front.

We used this parameter study to look for evidence to support
either of the two types of subgrid model. We do not test the
subgrid models directly because their formulations can be very
complex. After giving the problem formulation in Section 2,
we calculate the turbulent flame speed in Section 3, look
for a transition between the flamelet and thin reaction zones
regimes in Section 4, and test the self-similarity of the flame
by calculating its fractal dimension in Section 5. Continuing in
Section 5, we assemble a model for the turbulent flame speed
based on the fractal nature of the flame and use this model to
assess the relative strength of large-scale stretching and small-
to mid-scale turbulent wrinkling.

2. THE PROBLEM FORMULATION

Instead of solving the fully compressible Navier–Stokes equa-
tion, and continuity and heat equations, we reduced them with
the Boussinesq approximation. The Boussinesq approximation
only holds when the flow is subsonic, when the scale height of
the system is large compared to the vertical scale of the flow
and when temperature variations are small (Spiegel & Veronis
1960). In this case, density variations are only taken into ac-
count in the gravity term of the Navier–Stokes equation and the
continuity equation takes the incompressible form. Although
the continuity equation is incompressible, the volume expan-
sion term in the heat equation is taken into account because
it is not negligible compared with other heat equation terms.
This approach neglects the correction to the inertia term of the
momentum equation due to density variations, the viscous dis-
sipation of energy and shocks.

We simulated the Boussinesq fluid equations with a reaction
term, R(T ), added to the heat equation to model the burning
process. R(T ) describes the evolution of the fluid from an
unburnt fuel at temperature T = 0 to burnt ashes at temperature
T = 1. We chose a model reaction R(T ) = 2αT 2(1 − T ). This
specific model reaction is a form of the bistable reaction with
Tignition = 0, so no actual bistable behavior occurs.

This reaction has a very simple laminar solution in a station-
ary, gravity-free fluid (Constantin et al. 2003). When the flame
is laminar, it is completely flat with a characteristic width of δ
and it moves with the laminar flame speed so. δ and so are set
by α, the laminar reaction rate, and κ , the thermal diffusivity,

so that so = √
ακ and δ = √

κ/α. The actual flame thickness
(δt ) is larger than the characteristic flame width (δ) by a fac-
tor of 4, δt = 4δ. We calculated δt by measuring the distance
between the level sets T = 0.1 and T = 0.9. The bistable reac-
tion was selected because it has a smaller flame thickness than
the more commonly used Kolmogorov–Petrovsky–Piskounov
(KPP) reaction, which has δt = 18δ (Vladimirova et al. 2003).
We required a thin flame to investigate the effect of wrinkling
on the flame front (see Section 5). To measure the flame speed,
we calculated the bulk burning rate, which measures the total
creation of burned material per unit time (Vladimirova et al.
2003).

The fluid equations were non-dimensionalized by the char-
acteristic length scale (laminar flame front thickness, δ) and
timescale in the problem (the reaction time, 1/α) (Vladimirova
& Rosner 2003) to give

Du
Dt

= −
(

1

ρo

)
∇p + GT + Pr∇2u (1a)

∇ · u = 0 (1b)

DT

Dt
= ∇2T + 2T 2(1 − T ). (1c)

Non-dimensionalizing the equations yields two control pa-
rameters:

G = g

(
Δρ

ρ

)
δ

s2
o

(2)

Pr = ν

κ
, (3)

where G is the non-dimensionalized gravity and Pr is the Prandtl
number. To simplify the problem, physical characteristic values,
such as ν (the kinematic viscosity) and κ , are taken to be
constants independent of temperature. G is positive if the flame
is moving upward out of a gravitational well, as is the case here
and in the white dwarf.

There are also several implicit control parameters. These
control parameters do not result from non-dimensionalizing
the equations, but from our setup. The non-dimensional box
size, L = �/δ, must be considered because we simulate in a
finite computational domain. The Lewis number, Le = κ/D
(where D is the material diffusivity), is effectively Le = 1
because the simulations only track temperature and do not
separately consider any material diffusivity. The densimetric
Froude number, Frd = 1/

√
GL, gives the relative importance

of the gravitational force. Our simulation scenario implicitly
assumes that, for large values of GL, only the product GL
is physically important. We directly calculate the Reynolds
number, Re = UrmsL, using Urms calculated from the simulation
results, as a measure of the turbulence just behind the flame
front. In short, this set of simulations is a parameter study in one
variable: only G is varied. Pr, L, and Le are held fixed with the
values of Pr = 1, L = 128, and Le = 1.

All simulations used Nek5000 (Fischer et al. 2008), a freely
available, open-source, highly scalable spectral element code
currently developed by P. Fischer (chief architect), J. Lottes,
S. Kerkemeier, A. Obabko, and K. Heisey at the Argonne Na-
tional Laboratory. Nek5000 has several advantages. The code is
fast, has a low memory footprint and efficient preconditioners.
Because it is based on spectral elements, its numerical accu-
racy converges exponentially as the spectral order increases.
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Table 1
Simulation Parameters

G Elements Nelem lx Ncollocation Physical Total Time tstep tout Nsteps Resolution

1 16 × 336 5376 8 344064 128 × 2688 510 0.006 1.02 85000 1
2 16 × 192 3072 10 307200 128 × 1536 265.2 0.003 1.02 88400 0.8
4 32 × 448 14336 8 917504 128 × 1792 204 0.0015 0.51 136000 0.5
8 32 × 576 18532 8 1179648 128 × 2304 199.155 0.0015 0.1275 132770 0.5
16 32 × 512 16384 8 1048576 128 × 2048 127.5 0.00075 0.255 170000 0.5
32 32 × 608 19456 10 1945600 128 × 2432 102 0.0003 0.102 340000 0.4
64 64 × 1344 86016 8 5505024 128 × 2688 95.625 0.0001875 0.06375 510000 0.25
128 64 × 1344 86016 8 5505024 128 × 2688 67.32 0.00012 0.0612 561000 0.25

Notes. Simulation parameters. The columns are: the non-dimensional gravity, the number of elements in the x- and y-directions, the number of
collocation points in the x-direction (l2

x is the number of collocation points per element), the total number of collocation points, the physical
dimensions, the total running time, the time step, the amount of time between output files, the total number of steps, and the simulation resolution
(the average spacing between collocation points). All quantities are non-dimensional.

Nek5000 also allows direct control over the parameters in our
problem.

The simulation setup was as follows. The boundary conditions
were periodic on the side walls for all of the simulations. The
flame moved upward in the box in the direction opposite that
of gravity. The top of the simulation domain was subject to an
inflow condition with ux = 0 and uy = −vshift. Similarly, the
bottom of the simulation domain had an outflow condition with
ux = 0 and uy = −vshift. We dynamically set vshift equal to
the flame speed at the previous time step, which is permitted
by extended Galilean invariance (Pope 2000). The temperature
was held at T = 0 (fuel) for the top boundary and T = 1
(ash) for the bottom boundary. The flame was not allowed to
approach either boundary. Initially, the flame was perturbed
by a randomly seeded group of waves with an amplitude of 3.0
and wavenumbers between 4.0 and 16.0. The initial temperature
profile was given by T = 0.5∗(1.0−tanh(2.0∗r/w)), where r is
the vertical position of the flame front given by the perturbation
and w is the initial width of the front, set to w = 4.0 for the
bistable reaction.

The parameters for all of our simulations are given in Table 1.
The total running time for each simulation was chosen so that
the flame speed would undergo at least five oscillations of its
dominant period after the flame had reached a statistically steady
state. The flame speed as a function of time in the statistically
steady state is shown in Figure 1 for various values of G. We de-
fined the statistically steady state as beginning when a Reynolds
number based on the Urms averaged in a box of size 128 ×
128 placed just below the lowest extent of the flame surface
(defined by T = 0.5) reached 80% of its first maximum value.
All averages, such as the average flame speed or the average
fractal dimension, were computed beginning at this time.

We checked that our simulations were fully resolved in three
different ways. First, we calculated the viscous scale from
the Reynolds number and ensured that the resolution was at
least three times smaller than this calculated value. Second, we
calculated the fractal dimension (see Section 5.1) and showed
that the inner cutoffs are slightly higher than the calculated
viscous scale. Finally, we ran lower resolution versions of
the same simulations, and found no significant changes in the
calculated averaged quantities.

3. SCALING RESULTS

In this section, we show how several quantities scale with
changes to the non-dimensional gravity, G. These quantities are
the average turbulent flame speed, the average Reynolds number,

the average viscous scale, and the average flame height. We
apply our first test of the subgrid models and determine that the
scaling of average turbulent flame speed, s, is consistent with the
RT subgrid model, but not with a simplified turbulence subgrid
model given by s = Urms. Visualizations of the temperature field
for the simulations are given in Figure 2 and of the vorticity field
in Figure 3. These figures show that the flame front becomes
stretched and wrinkled for higher values of G. It is this stretching
and wrinkling that leads to the scalings that will be given in this
section.

The average turbulent flame speed is the most important
measured quantity for studies of Type Ia supernovae invoking a
DDT transition. Khokhlov (1995) suggested that the turbulent
flame speed for an RT-driven flame should scale (in our
dimensionless units) as

s = so

√
0.125GL (4)

for large enough values of G and L. This result is derived
directly from the growth rate of the RT instability found
by linear perturbation theory. This equation implies that the
turbulent flame speed should be independent of the laminar
flame speed. Zhang et al. (2007) confirmed this independence
for a carbon–oxygen flame. They also checked Khokhlov’s
suggested flame speed for the equivalent values of GL =
400, 671, 1493, 2786, and found agreement to within 10%
of the values predicted by Equation (4). Vladimirova and
Rosner checked the scaling for values up to GL = 128 for
reflecting boundary conditions (Vladimirova & Rosner 2003)
and GL = 512 for periodic boundary conditions (Vladimirova
& Rosner 2005). They also found a correction to Khokhlov’s
prediction at low values of G, and obtained

s = so

√
1 + 0.0486(G − G1)L, (5)

where G1 = 8(2π/L)1.72 is roughly the transition point between
the planar and cusped flames (Vladimirova & Rosner 2003).
This is equivalent to Khokhlov’s prediction, except with a
slightly different constant due to the measurements being in
2D instead of 3D.

Our set of simulations tests the scaling law for a wider range of
GL than either of these previous studies in the flamelet regime,
up to GL = 16, 384. Our best fit for the average flame speed
(see Figure 4(a)) is

s = so (1 + 0.0656(G − G1)L)0.471 , (6)
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Figure 1. Turbulent flame speed in the statistically steady regime as a function of time for various values of G. Initial transients are not shown.

which is very close to the predicted scaling of
√

GL. If we
assume that the predicted scaling is true, then we find

s = so

√
1 + 0.0503(G − G1)L. (7)

For this and all of our other scalings, we use the basic form given
in Equation (5) and assume that the same dependencies on G1

and L hold. (We have not yet extended this study to different
values of L to test these assumptions, but plan this for future
work.) The constant (k1 = 0.0503) in Equation (7) is consistent
with Vladimirova and Rosner’s result, k1 = 0.0486, rather than
Khokhlov’s, k1 = 0.125, as expected from the dimensionality
difference. The constant also matches the prediction for the
speed of a Boussinesq 2D rising bubble (Bychkov & Liberman
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Figure 2. Temperature field for various values of G. Blue is fuel (T = 0) and yellow is ash (T = 1). Intermediate temperature values (which can be seen for the higher
values of G) are green and red. The flame moves upward against the direction of gravity, which is downward. The computational boxes are much larger than those
shown here.

(A color version of this figure is available in the online journal.)

Figure 3. Vorticity fields for various values of G. Red vorticity points out of the page and blue vorticity points into the page. Lighter shades indicate stronger vorticity.
The layering seen downstream of the flame surface is due to the merger of vortices shed by the flame. These mergers are encouraged by the periodic boundary
conditions. The layers are left behind by the flame front and do not affect the flame front evolution. These vorticity layers should not be confused with the pathological
layering of density seen in simulations of the Rayleigh–Taylor instability without burning. These simulations are far from that regime, because the effect of burning is
still strong here.

(A color version of this figure is available in the online journal.)

2000; Layzer 1955), as pointed out by Vladimirova & Rosner
(2003). This similarity between our result and Vladimirova’s
suggests that the KPP reaction and the bistable reaction have
roughly the same flame speed at or above G = 1. Overall,
these results confirm that the appropriate subgrid model for

an RT-driven flame in 2D is the RT flame speed, as given by
Equation (7).

We also measured the Reynolds number in the area between
the uppermost and lowermost extent of the T = 0.5 temperature
contour. This is the area where the turbulence is directly next to
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GL. (b) The Reynolds
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The flame height as a function of G. The flame height is the vertical distance between the highest and lowest occurrences of the T = 0.5 contour. In all four graphs,
the error bars show the standard deviation of the oscillations around the average value of the quantity.

the flame front. When the flame is turbulent the largest eddies
are of size L, so Re = UrmsL/ν. The results are shown in
Figure 4(b), and the best-fit scaling is

Re = L (1 + 0.205(G − G1)L)0.558 . (8)

This suggests that subgrid models of the form s = Urms
overestimate the flame speed significantly (by a factor of three
for G = 128). The fact that Urms > s also shows that
the turbulence behind the flame must interact with the flame
front—the flame cannot outrun it entirely. It is also important
to note that Urms cannot be predicted on its own. An unphysical
flame, for instance, the very artificially thickened flame used in
many supernovae simulations, could produce an incorrect Urms
and therefore an incorrect prediction for the flame speed.

The viscous scale was calculated directly from the Reynolds
number data using the viscous scale in 2D turbulence: η =
LRe−1/2. The best-fit scaling for the viscous scale (see Fig-
ure 4(c)) is

η = L0.5 (1 + 0.207(G − G1)L)−0.280 . (9)

The viscous scale is smaller than our actual laminar flame
thickness (δt = 4) for G > 2. This will become important

in Section 5.2 which concerns a fractal model for the flame
speed.

The flame height is the amount of vertical space which
contains burning, here defined as the vertical distance between
the top and bottom of the T = 0.5 temperature contour. It
scales as

Hf = L (1 + 0.012(G − G1)L)0.152 ; (10)

see Figure 4(d). This is in contrast to the results of Vladimirova
& Rosner (2005) and Zhang et al. (2007), who found that the
height of the flame brush was roughly twice the width of the
box and independent of G.

In this section, we showed that the flame follows the RT
scaling for the flame speed, even in the limit when the flow
behind the flame is quite turbulent (Re ∼ 10,000). An alternative
model, based on the turbulent velocity behind the flame front,
overpredicts the flame speed. We confirmed that the bistable
reaction moved at similar speeds to the KPP model reaction
given in Vladimirova & Rosner (2003, 2005), so we do not
expect that the RT scaling is flame model-dependent. We also
gave scalings for the average Reynolds number, the average
viscous scale, and the average flame height. The average flame
height does vary with G, in contrast to previous results. The
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flame speed scales as the RT flame speed, which supports the
RT subgrid model, at least in the 2D case we have explored.

4. COMBUSTION REGIMES

In this section, we consider whether the simulations show
a transition between the “corrugated flamelet” and “thin re-
action zones” regimes of traditional turbulent combustion
theory (Peters 2000). If this transition does not occur when pre-
dicted, it could mean that the traditional turbulent combustion
theory upon which these regimes, and turbulence-based subgrid
models, are based does not apply to RT unstable flames. The
transition is predicted to occur at Ka = (τc/τt ) = 1, where Ka
is the Karlovitz number. In the corrugated flamelet regime, the
chemical timescale (τc) is shorter than the turbulent timescale
(τt ), and so Ka < 1. The flame is wrinkled by turbulence, but
its internal structure remains intact because the viscous scale is
larger than the flame width. When Ka > 1, in the thin reaction
zones regime, the viscous scale is smaller than the flame width
and the internal flame structure changes.

We calculated the Karlovitz number to find the value of G
at which the transition from corrugated flamelets to the thin
reaction zones regime should occur. The Karlovitz number
is based on the distance between the T = 0.1 to T = 0.9
temperature contours, 4δ for the bistable reaction. So

Ka = τaw

τt

=
(

4δ

so

) (
Urms

L

)
= 4 (1 + 0.205(G − G1)L)0.558

L
,

(11)
where we used the scaling for the Reynolds number given by
Equation (8). Here, τaw is the chemical crossing timescale for
the actual width of the flame, measured between the T = 0.1
and T = 0.9 temperature contours. We also used the fact
that, for 2D turbulence, eddies of all sizes have the same
characteristic turnover time (Davidson 2004, p. 581–582). For
large values of G, this Karlovitz number is approximately
Ka ≈ (1.68G0.56/L0.44).

From Equation (11), the transition from corrugated flamelets
to thin reaction zones should occur at G = 18. Thus, for G =
1, 2, 4, 8, 16 the flames should be in the flamelet regime and for
G = 32, 64, 128 the flames should be in the thin reaction zones
regime. However, all of our flames visually appear to remain in
the flamelet regime, with just a bit of extra thickening for higher
values of G (see Figure 2). Because the transitions between
turbulent combustion regimes are only predicted approximately
(Law 2006; Poludnenko & Oran 2010), our result should be
regarded as only weak evidence of inconsistency with these
predictions. That is, for G = 128, Ka = 3, which is similar
enough to the predicted transition value of Ka = 1 (given the
approximate nature of the theory) that we cannot definitely claim
that a transition ought to have taken place.

What other reasons could there be for seeing no transition?
One obvious possibility is the properties of the model flame.
Because of the nature of the model reaction, there are no separate
pre-heat and reaction zones because the bistable reaction allows
fuel of any nonzero temperature to burn. Also, the flame
cannot become extinct by quenching in a realistic way (see
Vladimirova et al. (2003) for a discussion of this point for the
KPP reaction). Physically more appropriate flame models tend
to be based on models such as the Arrhenius reaction, for which
the reaction vanishes exponentially for low temperatures. The
bistable reaction has a much less precipitous drop-off in the
reaction rate for low temperatures. This means that the transition
to the thin reaction zones should be easier than for the Arrhenius

reaction, but the subsequent transition to the “broken reaction
zones” regime (when the innermost reaction zone is disturbed
by turbulence) is unrealistically difficult for these flames. Our
simulations, therefore, do not probe this regime, and thus, as
long as the transition to thin reaction zones depends mainly on
the disruption of the reaction, and not on the extinction of the
flame, it actually should occur more easily for model flames.

The second possibility is that traditional turbulent regimes
are not appropriate for RT unstable flames because the flame
is not forced to completely interact with any given eddy. In
traditional turbulent combustion, the turbulence is in the path
of the flame (i.e., is already present in the unburnt fuel) so
the eddies must move completely through the flame front.
(In such situations, the turbulence is typically driven by some
mechanism other than the flame itself, although the flame might
modify the turbulent flow.) The eddies in our simulation are
instead created either within the flame, in front of, or behind
the flame, so if they are quickly forced downstream, flame front
wrinkling will be minimized—an effect we observed with our
simulated flames. In fact, we found that the vorticity ahead
of the flame front is negligible compared with the vorticity
within and behind the flame for all of our simulations. Given
these differences in physical situation, it appears likely that the
results from traditional turbulent combustion cannot be simply
applied to an RT-driven flame. That the bistable flames studied
here remained in the flamelet regime, and did not transition
to the thin reaction zones regime, suggests that the traditional
turbulent flame picture does not apply here. It further suggests
that if a turbulent flame model is to be developed for such
flames, substantial modifications to the traditional theory will
be required. In any case, the above arguments cast doubt on
the applicability of the turbulence-based subgrid model, since
it is based on the very physical mechanisms that underlie the
traditional combustion regimes.

5. MEASURING WRINKLING WITH
THE FRACTAL DIMENSION

Given that the turbulence-based subgrid model appears to be
an unlikely candidate for the kinds of flames we have inves-
tigated, we next need to test whether the alternative RT sub-
grid model is physically consistent with our simulation results.
We perform this test in the present section: we test the self-
similarity requirement for the RT subgrid model by checking
whether the flames are fractal. Gouldin (1987) applied the the-
ory of fractals to turbulent flames for the first time and many
other studies have made the same application since, for example,
Kerstein (1988), Mantzaras et al. (1989), Gulder (1990),
Woosley (1990), Bravo & Garcia-Senz (1995), Collins (1995),
Blinnikov & Sasorov (1996), Gulder (1999), and Sreenivasan
(2004). As we will show, our simulated flames are indeed fractal;
furthermore, we will show that the fractal dimension increases
with G up to an asymptotic value of roughly DF ≈ 1.5. This
sort of asymptotic behavior is naturally expected from passive
scalar theory. Using the asymptotic value for the fractal dimen-
sion and the flame’s fractal behavior, we construct a fractal
model for the flame speed. Finally, we show that a larger frac-
tion of the flame speed comes from large-scale stretching than
from small-to-mid-scale turbulent wrinkling.

5.1. Calculating the Fractal Dimension of the Flame Front

A fractal is defined as an object “whose parts relate to the
whole in some way” (Sreenivasan 1991). Put another way, a
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fractal (curve) is an object whose measured length changes
depending on what size ruler is used to measure it (Mandelbrot
1967, 1982). For a true fractal curve, the length becomes infinite
as a ruler size goes to zero. The total number of rulers, N, needed
to cover a curve measured at a scale ε is given by

N (ε) = ε−DF . (12)

This leads to an expression for the fractal dimension

DF = − lim
ε→0

log(N (ε))

log(ε)
. (13)

A common way to measure the fractal dimension is to
compute the box counting (or capacity) dimension (Sreenivasan
& Meneveau 1986). The box counting algorithm uses boxes of
different sizes (instead of rulers) to measure the length of the
curve. For each box size, the space that the curve is embedded in
is tiled with boxes. The minimum number of boxes of each size
needed to cover the curve is counted. This minimum is found
by repeating box counting several times with the same box size
but with the boxes in different positions. After recording the
number of boxes for a range of box sizes, a plot is made of the
log of the number of boxes at each size versus the log of the box
sizes. The slope of this plot is the fractal dimension. We applied
a box counting algorithm to the T = 0.5 temperature contour to
find the fractal dimension of the flame fronts. For each box size,
we used the maximum number of possible offsets allowed by
the simulation resolution to find the minimum number of boxes
for each box size. Each simulation output file was measured
separately. To find the fractal dimension for a given value of G,
we averaged over the fractal dimension for each file in the same
time range that was used to find the average velocity.

For physical objects, including flames, there is an inner
cutoff scale below which no extra length will be measured.
For example, if wrinkling is caused by turbulence, then there
should be no extra wrinkling at scales below the viscous scale.
Physical objects also have a maximum scale, the outer cutoff
scale, below which the curve exhibits fractal behavior. In the
case where both the inner and outer cutoff scales exist, a total,
true length can be measured for the curve. This true length is the
length of the curve measured with a ruler the size of the inner
cutoff scale. In terms of the fractal dimension and the inner and
outer cutoff scales, this length is given by (Sreenivasan 1991)

Lf = Lo ∗
(

L

η

)DF −1

, (14)

where η is the inner cutoff scale, L is the outer cutoff scale (in
this case, the box width), DF is the fractal dimension, and Lo is
the length measured with a ruler the size of the box width, L.

In order to find the actual length of the flame (and therefore
calculate the flame speed), the inner and outer cutoffs must
be known. We found that the inner cutoff occurs somewhere
between the viscous scale and the flame width. The fractal
behavior is clear between the flame width and around 50%–60%
of the total simulation size, L. This is about the box size at which
the box counting procedure usually begins to fail (Foroutan-pour
et al. 1999). The failure of box counting to find fractal similarity
above a certain box size does not mean that the object is not
fractal on these scales. If the object is very convoluted on the
largest scales, as flames are, then box counting will undercount
the number of ruler lengths necessary to measure the flame
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Figure 5. Fractal dimension as a function of G. The error bars indicate the
standard deviation of the oscillations of the fractal dimension around the average
fractal dimension. The fractal dimension appears to asymptote to approximately
DF = 1.5 for high values of G.

length at these scales. In our fractal model in Section 5.2, we
will assume that fractal behavior extends all the way from the
viscous scale to the integral scale (L).

As shown in Figure 5, we find that the average fractal dimen-
sion is larger for larger values of G. (The error bars indicate
the standard deviation of the fractal-dimension measurements.)
This variation in fractal dimension for a given G is probably
natural and not due to measurement uncertainties. Similar vari-
ation has been seen in other fractal systems that are generated
by turbulence (Prasad & Sreenivasan 1989). Sreenivasan (1991)
proposed that it is due to the probabilistic nature of the turbu-
lence itself.

The fractal dimension seems to asymptote toward DF ≈ 1.5
for large values of G. It is physically likely that such a firm
asymptote below DF = 2 does exist. We expect this from
studies of the interfaces of passive scalars in turbulent flows
in 3D. Experimental studies (summarized in Sreenivasan 1991)
show that the fractal dimension of such scalar interfaces tends to
approach DF = 2.36 for high Reynolds numbers. Sreenivasan
et al. (1989) calculated an asymptotic fractal dimension very
similar to this (DF = 7/3) theoretically by considering the
momentum flux across the interface. In addition, Constantin
et al. (1991) calculated an absolute upper limit of DF = 2.5
for scalar isosurfaces. Such limits probably also exist for
scalar surfaces in 2D. Of course, the temperature field of
the flame is not a passive scalar, so these arguments do not
directly apply. However, for large values of G the behavior
of the temperature field becomes increasingly like that of a
passive scalar because the chemical timescale becomes much
longer than the hydrodynamic timescale. This means that
arguments for upper limits of the fractal dimension for scalar
isosurfaces should apply for large values of G, and so the
fractal dimension should reach an asymptotic value considerably
below DF = 2.

To conclude, in this subsection we showed that the simulated
flames are fractal, and that the fractal dimension increases with
G up to an asymptotic value of roughly DF ≈ 1.5. We also put
forth an argument for why we expect that the fractal dimension
should be asymptotic toward an intermediate value between
DF = 1 and 2 instead of increasing to DF = 2. The fact that
the flames are fractal means that they are self-similar—this is
consistent with one of the properties of the RT subgrid model,
and thus supports its applicability to the kinds of flames we have
studied here.
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5.2. Large-scale Rayleigh–Taylor Stretching
versus Turbulent Wrinkling

The effects of large-scale RT stretching and turbulent wrin-
kling on the flame front can be disentangled by finding their
respective contributions to the flame area and therefore the
flame speed. In this subsection, we construct a model for the
flame speed based on the fractal behavior of the flame and ex-
tract the contributions from wrinkling and stretching. We then
examine how this argument might be extended to 3D. Finally,
we comment on the effects of local flame stretch and curvature,
which could potentially destroy the proportionality between the
flame surface area and the flame speed.

Damkohler (1940, 1947 translation) suggested that the flame
speed for flames in the flamelet regime is directly proportional
to the surface area of the flame and is given by

s

so

= Af

Ao

, (15)

where s is the turbulent flame speed, so is the laminar flame
speed, Af is the turbulent flame area, and Ao is the undisturbed
flame area. This expression assumes that each infinitesimal piece
of flame surface moves with the laminar flame speed. Models
that use fractals to determine the flame surface area have since
been considered by Kerstein (1988), Mantzaras et al. (1989),
Gulder (1990, 1999), Woosley (1990), Collins (1995), Blinnikov
& Sasorov (1996), and Sreenivasan (2004).

Since our simulations are in 2D, the flame area is really a
flame length. Using Damkohler’s model for the flame speed,
s/so = Lf /L, a fractal model for the flame area is

Lf = LRT(G) ∗
(

L

η(G)

)DF −1

. (16)

This model assumes that the flame is fractal between the viscous
scale and the integral scale, L, as we justified in Section 5.1. The
flame length has two contributions. The first term, LRT is the
large-scale stretching caused by the RT instability. Turbulent
wrinkling, the second term, is superimposed on the stretched
flame. All of the components of the second term are known, so
the scaling of the first term can be determined from the second
term and the scaling of the flame speed. We determined in the
previous section that DF → 1.5 for large values of G. We also
showed in Section 3 that Re = L (1 + 0.205(G − G1)L)0.558.
Using the relation for the viscous scale in 2D turbulence,
η = L ∗ Re−1/2 with the previous two equations gives Lf ∝
LRT(G) ∗ G0.14 for large values of G. We already know that
s ∝ √

GL, so it follows that large-scale RT stretching scales
as G0.36 and the turbulent wrinkling scales as G0.14. Therefore,
for large values of G, large-scale RT stretching will contribute
more to the flame speed than turbulent wrinkling. The dominant
behavior of large scales again suggests that the RT subgrid model
is an appropriate description for the flames we are studying.

What about 3D flames? In that case, the viscous scale is
given by η = LRe−3/4 and DF → 2.36 for large values of G
(see Section 5.1). Since we have not yet carried out simulations
in 3D, we do not know the scaling for the Reynolds number
in this regime. However, we can determine what the scaling
would have to be in order for turbulent wrinkling to win out
over large-scale RT stretching: Re ∝ G0.93. Based on our
numerical results so far, this scaling shows what is probably
an unrealistically large dependence on G (given that the 2D
Reynolds number dependence only scales as G0.558), which

would represent a hugely efficient generation of turbulence by
the flame. Therefore, it is likely that in 3D RT stretching still
dominates over turbulent wrinkling, a prediction that will need
to be verified by future calculations.

An ordinary flame is subject to effects other than just RT
stretching and turbulent wrinkling, specifically, flame stretch
and curvature effects. These effects can destroy the usual
proportionality between the flame surface area and the turbulent
flame speed because the local flame speed is modified from its
laminar value. For example, if the Lewis number is not equal to
one, then the flame will be subject to stretch and strain effects
due to the difference in thermal and material diffusivities (Dursi
et al. 2003; Law 2006). The Lewis number of our flames is
equal to one, so these effects are nonexistent. A flame can also
be modified by pure curvature effects (Law 2006; Markstein
1964): in areas where the curvature of the flame is positive
with respect to the fuel the local flame speed is smaller than
the laminar flame speed and in areas where the curvature is
negative the local flame speed is larger than the laminar flame
speed (Markstein 1964). The total effect of these local changes
to the flame speed can be taken into account by changing the
laminar flame speed to a new value. However, this change will
not affect the flame speed of the RT-driven flame (for large
values of G) because the flame speed does not depend on the
laminar flame speed (Khokhlov 1995); see Equation (4). This
means that the scalings given above for the RT stretching and
turbulent wrinkling are also not affected by curvature effects.
The effect of Le 
= 1 can also be described as a change in
the laminar flame velocity. So even in that case, the turbulent
flame speed can still be divided into RT stretching and turbulent
wrinkling alone, as long as no large-scale Le 
= 1 instabilities
are present.

Given this argument, it is interesting to note that both Zingale
et al. (2005a) and Bell et al. (2004) found that the surface area
of their carbon–oxygen flames predicted a much higher flame
speed than they actually found. This difference from our results
could be due to the difference between their more realistic flames
and our model flames, Lewis number effects beyond the local
modification of the flame speed, or the difference between the
transient regime (which they studied) and the saturated regime
(studied here). We return to this point in Section 6 below.

In this subsection, we disentangled the effects of large-scale
RT stretching and turbulent wrinkling on the flame front by
finding their respective contributions to a fractal model of the
flame speed. We found that large-scale RT stretching is the
dominant contribution to the flame speed, and that it outweighs
the contribution from turbulent wrinkling when G is large. We
discussed local effects (flame stretch and curvature) that could
invalidate a fractal flame model for the flame speed, and argued
that these effects do not apply here. These results support the
RT subgrid model because they show that the flame speed is
controlled by the largest scales in the problem, as is expected in
the formulation of the RT subgrid model.

6. CONCLUSIONS

In this paper, we contributed results from a fully resolved 2D
parameter study of RT unstable flames in which we varied the
non-dimensional gravity, G. This study extends the model flame
results of Vladimirova & Rosner (2003, 2005) to much larger
values of GL, for which the flame is significantly disrupted by
turbulence. The main purpose of the study was to understand
the interaction between the RT instability, the flame surface,
and the turbulence behind the flame surface, and to use this
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understanding to distinguish between the two major types of
subgrid models: RT- and turbulence-based. We gave scalings
for the turbulent flame speed, the Reynolds number, the viscous
scale, and the height of the flame, and used these scalings
to calculate the Karlovitz number, showing that, although we
expect a transition from corrugated flamelets to thin reaction
zones, we did not observe one. Finally, we calculated the fractal
dimension of the flame, and showed that it approaches an
asymptotic value of about DF = 1.5; we used this result to
develop a fractal-dimension model of the flame speed. Using
this model, we demonstrated that the relative contributions of
large-scale stretching to the flame speed are larger than the
contributions of small- to mid-scale wrinkling.

Our conclusions from these calculations support the RT-based
subgrid model. First, the turbulent flame speed scales with the
RT flame speed, s ∝ √

GL. This alone is enough to confirm
the RT subgrid model because the purpose of the model is the
produce the correct flame speed. Second, the flame is fractal and
is therefore self-similar, which confirms one of the two major
requirements for the RT subgrid model. Finally, we observed
that a larger percentage of the flame speed at large GL is due
to large-scale stretching than to the small-scale wrinkling due
to turbulence. This means that the flame is controlled by the
large scales, as postulated by the RT subgrid model, instead of
by the small scales, as postulated by turbulence-based subgrid
models. In addition, we found evidence that traditional turbulent
combustion models may not apply to the RT unstable flame
system. In summary, we confirmed that the RT subgrid model
produces the correct flame speed in 2D, and that its physical
basis on the self-similarity and large-scale control of the flame
is sound.

In addition, the result that the flame speed scales as the RT
flame speed means that the flame will never achieve speeds
near the sound speed in the white dwarf via this mechanism
(Hillebrandt & Niemeyer 2000; Vladimirova & Rosner 2003).
The fact that RT stretching contributes more to the flame speed
than turbulent wrinkling suggests that there is no runaway
wrinkling process that can occur for high GL that accelerates
the flame past the RT flame speed. This means that the flame will
be unable to transition to a detonation simply by increasing its
surface area to reach the sound speed. Other mechanisms, such
as the Zel’dovich gradient mechanism, are needed to actually
cause a detonation.

By design, these simulations do not realistically match the
conditions in the white dwarf. Most importantly, the simulations
are in 2D. We know that 3D turbulence is very different from
2D turbulence. The key issue is the direction of the energy
cascade, which in 3D takes energy from large scales to small
scales. Exactly how this difference in energy cascade affects our
results, in particular our discussion of the fractal nature of the
flame, will only be answered by carrying out 3D simulations.

The second unrealistic characteristic of these simulations is
that they are confined by the simulation box, while unconfined
RT flames in an expanding star may behave differently. How-
ever, confined, saturated simulations can still be useful, because
they indicate the statistically steady state the flame is working
toward, even if it never reaches it. In addition, the self-regulating
mechanism, which leads to a statistically steady flame speed in
the saturated case studied here does not necessarily depend on
saturation to operate (Zhang et al. 2007). This means that the
results given in this paper may apply to the transient flame
when the turbulence behind the flame is able to respond the RT
instability sufficiently quickly.

Finally, these simulations were of a model flame while the
actual flame is a carbon–oxygen nuclear flame. However, model
flames are useful in two different ways. First, having a model
flame allowed us to isolate the effect of gravity without wor-
rying about Lewis number effects. Second, comparisons with
carbon–oxygen nuclear flames show that there are intriguing
differences between the two that could be due to Le effects
or other characteristics of the nuclear flame. Specifically, we
found that the fractal dimension in our case seems to asymptote
to DF = 1.5 while Bell et al. (2004) inferred indirectly that
their flames were best described by DF = 1.7. Also, in our sim-
ulations, the flames were well described by fractals, while Bell
and Zingale found that the flame surface area overestimated the
actual flame speed. Thus, comparisons with model flames could
provide clues to the cause of certain characteristics of more re-
alistic flames. In particular, the realistic Le 
= 1 flames may be
affected by thermo-diffusive instabilities that compete with the
RT instability.

In the future, large-scale 3D simulations are needed to test
whether the RT-based subgrid model for the flame speed does
hold in 3D. Some results already indicate this is the case (Zhang
et al. 2007). We plan to use this 2D study as a basis for a 3D study
along these lines. If the RT flame speed does hold in 3D, then
the stretching versus wrinkling argument in Section 5.2 will be
validated. As we argued earlier, because the flame front behaves
more and more like a passive scalar for high values of G, we
expect the fractal dimension of the flame front to be inevitably
bounded from above. This implies that, unless the production
of turbulence by the flame in 3D is extremely efficient, RT
stretching controls the flow and the RT-based subgrid model is
the most appropriate subgrid model.
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